List circular backbone colouring

نویسندگان

  • Frédéric Havet
  • Andrew D. King
چکیده

A natural generalization of graph colouring involves taking colours from a metric space and insisting that the endpoints of an edge receive colours separated by a minimum distance dictated by properties of the edge. In the q-backbone colouring problem, these minimum distances are either q or 1, depending on whether or not the edge is in the backbone. In this paper we consider the list version of this problem, with particular focus on colours in Zp – this problem is closely related to the problem of circular choosability. We first prove that the list circular q-backbone chromatic number of a graph is bounded by a function of the list chromatic number. We then consider the more general problem in which each edge is assigned an individual distance between its endpoints, and provide bounds using the Combinatorial Nullstellensatz. Through this result and through structural approaches, we achieve good bounds when both the graph and the backbone belong to restricted families of graphs. Key-words: backbone colouring, list colouring, planar graph, combinatorial Nullenstellensatz ∗ Projet Mascotte, I3S (CNRS, UNSA) and INRIA Sophia Antipolis and Simon Fraser University, PIMS, UMI 3069, CNRS. Partly supported by ANR Blanc International GRATEL and ANR Blanc AGAPE. † Departments of Mathematics and Computing Science, Simon Fraser University, Burnaby, BC, Canada. Supported by a PIMS Postdoctoral Fellowship and the NSERC Discovery Grants of Pavol Hell and Bojan Mohar. ha l-0 07 59 52 7, v er si on 1 30 N ov 2 01 2 Coloration dorsale circulaire sur listes Résumé : Une généralisation naturelle de la coloration de graphe requiert de prendre des couleurs dans un espace métrique et que deux sommets reliés par une arête reçoivent des couleurs séparées par une distance minimum imposée par les propriétés de l’arête. Dans les cas de la coloration q-dorsale, ces distances minimum valent q ou 1, suivant que l’arête est dans la dorsale ou non. Dans ce rapport, nous considérons un version sur listes de ce problème, en prenant des couleurs dans Zp – ce problème est étroitement lié au problème de la choisissabilité circulaire. Nous prouvons d’abord que la choisissabilité q-dorsale circulaire d’un graphe est majorée par une fonction de la choisissabilité. Nous considérons ensuite un problème plus général dans lequel chaque arête est munie d’une distance propre requise entre ses extrémités et donnons des bornes supérieures à l’aide du Nullstellensatz combinatoire. A l’aide de ce résultat et d’approches structurelles, nous obtenons de bonnes bornes quand le graphe et la dorsale appartiennent à des classes particulières de graphes. Mots-clés : coloration dorsale, coloration sur listes, graphe planaire, Nullenstellensatz combinatoire ha l-0 07 59 52 7, v er si on 1 30 N ov 2 01 2 List circular backbone colouring 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular consecutive choosability of graphs

Abstract This paper considers list circular colouring of graphs in which the colour list assigned to each vertex is an interval of a circle. The circular consecutive choosability chcc(G) of G is defined to be the least t such that for any circle S(r) of length r ≥ χc(G), if each vertex x of G is assigned an interval L(x) of S(r) of length t, then there is a circular r-colouring f of G such that...

متن کامل

Every 2-choosable graph is circular consecutive 2-choosable

Suppose G is a graph, r is a positive real number and S(r) is a circle of perimeter r. For a positive real number t ≤ r, a (t, r)circular consecutive colour-list assignment L is a mapping that assigns to each vertex v of G an interval L(v) of S(r) of length t. A circular L-colouring of G is a mapping f : V (G) → S(r) such that for each vertex v, f(v) ∈ L(v) and for each edge uv, the distance be...

متن کامل

List backbone colouring of graphs

Suppose G is a graph and H is a subgraph of G. Let L be a mapping that assigns to each vertex v of G a set L(v) of positive integers. We say (G,H) is backbone L-colourable if there is a proper vertex colouring c of G such that c(v) ∈ L(v) for all v ∈ V , and |c(u) − c(v)| > 2 for every edge uv in H . We say (G,H) is backbone k-choosable if (G,H) is backbone Lcolourable for any list assignment L...

متن کامل

Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs

We consider a natural restriction of the List Colouring problem: k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We a...

متن کامل

List-colourings of Near-outerplanar Graphs

A list-colouring of a graph is an assignment of a colour to each vertex v from its own list L(v) of colours. Instead of colouring vertices we may want to colour other elements of a graph such as edges, faces, or any combination of vertices, edges and faces. In this thesis we will study several of these different types of list-colouring, each for the class of a near-outerplanar graphs. Since a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics & Theoretical Computer Science

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014